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Abstract

Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells. Irreg-
ularities in chromosomal copy number caused by missegregations of chromosomes during mitosis can be
visualized by cytogenetic techniques including fluorescence in situ hybridization (FISH), spectral karyotyp-
ing (SKY) and comparative genomic hybridization (CGH). In the current work, we consider the propaga-
tion of irregular copy numbers throughout a cell population as the individual cells progress through
ordinary mitotic cell cycles. We use an algebraic model to track the different copy numbers as states in a
stochastic process, based on the model of chromosome instability of Gusev, Kagansky, and Dooley, and
consider the average copy number of a particular chromosome within a cell population as a function of
the cell division rate. We review a number of mathematical models for determining the length of the cell
cycle, including the Smith–Martin transition probability model and the �sloppy size� model of Wheals,
Tyson and Diekmann. The program MITOSIM simulates the growth of a population of cells using the
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aforementioned models of the cell cycle. MITOSIM allows the cell population to grow, with occasional
resampling, until the average copy number of a given chromosome in the population reaches a preset
threshold signifying a positive copy number alteration in this region. MITOSIM calculates the relationship
between the missegregation rate and the growth rate of the cell population. This allows the user to test
hypotheses regarding the effect chromosomal aberrations have upon the cell cycle, cell growth rates, and
time to population dominance.
Published by Elsevier Inc.
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1. Introduction

The vast majority of solid tumors of epithelial origin (carcinomas) often have genomic imbal-
ances that range from defined chromosomal bands to entire chromosome arms and, in the most
extreme cases, entire chromosomes [1]. This aneuploidy is specific for different tumor types, specific
for certain tumor stages, and late tumor passages (such as in metastases or in established cell lines)
still very faithfully maintain the cancer specific distribution of genomic imbalances seen in earlier
stages [1]. These facts suggest that continuous selection pressure for the maintenance of these aber-
rations exists. Cytogenetic analyses have also shown that early chromosomal imbalances occur in
clusters in a low percentage of cells, and that, at later stages of tumorigenesis, cells that maintain
such aberrations constitute the majority of tumor cells [2]. Because chromosomal aneuploidy can
result from errors during the segregation phase of mitosis, we present, in the current work, a com-
prehensive mathematical theory for the propagation of copy number abnormalities, combining
missegregation models with a number of models for modeling intermitosis time. For the missegre-
gation models, we start from a synchronized model of Gusev et al. [3,4] and show it can be modified
to be made asynchronous, while enhancing the ability to analyze the model algebraically. We also
present simulation software modeling the accumulation of copy number abnormalities to aid in
interpretation of laboratory data on population dynamics in cancer cell lines.
Studies in population genetics have well established the idea that biological variants occur in all

populations and at different ratios. Under certain conditions, particular alleles or genes can confer
a selective advantage. Some examples of this are antibiotic resistance in bacteria [5,6], malaria
resistance in people heterozygous for the sickle cell allele of hemoglobin [7–9] and the evolution
of drug resistance in tumors [10–12]. Cells with the ability to repair DNA after ionizing radiation
have much greater survival rates compared to cells lacking any number of these repair enzymes
[13–16]. A faster growth rate or the capacity to overcome death or senescence will, all other things
being equal, confer upon a variant cell the ability to eventually overtake and dominate a popula-
tion. In fact, this is one of the fundamental principles of tumorigenesis.
Another well-established tenet of cancer research is that there is an increase in the number of

genomic aberrations during the progression from a benign cell mass to a metastatic tumor [17].
These alterations of the cellular blueprint can take many forms. Small point mutagenic events,
as in the case of mismatch repair deficient colorectal tumors [18–20], can accumulate in the
genome and affect the function of individual proteins either by rendering them incapable of
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performing their biological function or by conferring upon them new functions. Amplifications or
deletions modify the copy number of a given gene(s) thereby affecting protein expression levels.
The affected genes are typically oncogenes or tumor suppressor genes, respectively, which ulti-
mately alter cell division rates and/or the ability to arrest the cell cycle to allow repair of damaged
DNA. A study by Visakorpi et al. [21] shows that amplification of the androgen receptor gene is
selected for in tumors resistant to androgen deprivation therapy. Also, thousands of genes can be
gained or lost simultaneously through the unequal partitioning of chromosomes during mitosis or
non-reciprocal chromosome rearrangements. These gross chromosomal aneuploidies affect the
expression of most of the genes on the involved chromosome [22–26].
Cytogenetic observations have provided ample evidence that the gain of chromosome 7 in colo-

rectal polyps is often the earliest detectable genetic aberration [27–31]. It has been speculated that
this specific chromosomal gain confers a growth advantage through an increase in the copy num-
ber of the epidermal growth factor receptor gene located at 7p13 [32–34]. Some of the mathemat-
ical explanation and all of the simulations below are based on the example of colorectal polyps
and chromosome 7. Likewise, the loss of 17p in these same tumors may enable the cells to bypass
the cell cycle arrest checkpoint as a result of the decreased copy number of the TP53 gene. Acqui-
sition of extra copies of chromosome 3q in cervical carcinomas may allow the cells to escape
senescence via an increase in the number of hTERC genes, since the encoded RNA is part of
the machinery involved in the maintenance of telomere length [2]. These strictly conserved recur-
rent aberrations and genomic imbalances within or across tumor types are presumed by many to
be instrumental for tumorigenesis, and are therefore assumed to confer a selective advantage.
However, they shed little light on how large the selective advantage is and how the advantage
is achieved from one generation to the next.
One hypothesis for the advantage conferred upon cancer cells by means of chromosomal aneu-

ploidy is that they can increase the rate of cell division. Thus, once a copy number change occurs
in a few cells, these cells and their descendants could dominate the population. Suppose our pro-
tocol is to count a �gain� in a chromosome (i) once its observed average copy number is at least
2 + d, for some value of d > 0. Given a hypothesized rate p for chromosome missegregation
and a function Td that estimates the population doubling time as a function of the copy number
i, one quantity of interest is the amount of time required to change the average copy number in
our population of cells from 2 to 2 + d. Several researchers have proposed that, in cancers of epi-
thelial origin and derived cancer cell lines, chromosome missegregation and the resulting aneu-
ploidy are dominant genetic aberrations [17,35–37].
Two laboratory techniques now in wide use to measure aberrations in cancer cells are spectral

karyotyping (SKY)/multiplex FISH (M-FISH) [38,39] and comparative genomic hybridization
(CGH) [40]. SKY shows chromosomal rearrangements qualitatively in color in metaphases from
individual cells in a sample preparation. CGH, on the other hand, measures deviations from the
normal chromosome copy number (2 for autosomes) quantitatively averaged over the entire sam-
ple. Since CGH/SKY/M-FISH studies can allow us to measure the average copy number, an esti-
mate of the time required for a shift in the copy number of a given chromosomal region to appear
in the population would enable us to decide if the assumed values of p and Td(i) are biologically
plausible.
To study the influence of chromosomal imbalances on cell division rates, we analyzed a mathe-

matical model for cell growth, using parameters such as chromosome missegregation rates and
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population doubling times. Our goal for this model is to allow us to theoretically determine
whether it would be feasible, and how long it would take, to shift the chromosome profile of a
continuously growing cell population. This model could ultimately be used to refine the various
parameters after in situ experimentation.
In Section 2, we present our exponential model for cell division with missegregation errors.

First, we consider a synchronized model for mitosis, with fixed intermitotic times, based on
the work of Gusev et al. We then consider a continuous time model using an exponential dis-
tribution for intermitotic times. We show that the exponential model is amenable to methods
from Markov analysis and linear algebra. Using a computer algebra system, and given a value
of d > 0, it is possible to obtain an analytic estimate for the time Td needed to change the aver-
age copy number from 2 to 2 + d. In Section 3.1, we summarize a well-established mitosis model
of Smith and Martin [41], the �transition probability model�, that includes a constant lag time
before mitosis may occur in any daughter cell. The Smith–Martin model is, in principle, more
complex than our exponential model because of an extra parameter (the lag). However, we point
out that this parameter can be eliminated in the asymptotic, steady state by a change of vari-
ables. Thus, the derivations in Section 2 remain applicable with the addition of a constant
lag. In Section 3.2, we summarize a different model of mitosis proposed by Wheals [42] and Ty-
son and Diekmann [43] called the �sloppy size� model. In Section 4, we present a computer pro-
gram MITOSIM that simulates mitosis using either the exponential, lagged exponential or
sloppy size models, and tracks the propagation of copy number aberrations as they randomly
appear in the population. We show results of representative MITOSIM runs and demonstrate
that they are in good agreement with analytical results for the exponential and lagged exponen-
tial models.
2. Mathematical models for mitosis

2.1. A discrete time model for tumor growth

To clarify the issues involved in modeling mitosis, we first consider an idealized scenario where
all the cells in the population have been synchronized to undergo mitosis simultaneously, and we
make a further assumption that intermitotic times are constant. This simple model is very similar
to the model considered in [3] to study the propagation of chromosomal segregation errors over
the long term. The general Gusev model [3,4] allows for modeling segregation errors over all chro-
mosomal pairs simultaneously, but we prefer to focus on only one chromosomal pair at a time, as
the explosion in the number of possible combinations of copy numbers makes computations un-
wieldy and seriously weakens the statistical power of any measurements.
Suppose we fix our attention on a specific chromosome, for example, chromosome 7 in a colo-

rectal cancer cell line, whose copy number is allowed to range from 1 to k. Suppose also there is a
constant missegregation probability p: if a cell with copy number i missegregates during mitosis, it
produces two daughter cells, one with copy number i � 1 and one with copy number i + 1. We
enforce boundary conditions on the allowed copy numbers: if i = 1, the cell with the smaller copy
number dies, and if i = k, the cell with the larger copy number dies. If no chromosomal misseg-
regation occurs, each of the two daughter cells has copy number i.
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This process can be described by a transition matrix M(p) = (mij), where mij is the expected
number of cells in state i after mitosis, for each cell in state j before mitosis. Thus

• mii = 2(1 � p) for all i,
• mij = p if |i � j| = 1, with 1 6 i, j 6 k, and
• mij = 0 for |i � j| > 1.

Let v(t) be the vector describing the distribution of cells in each state as a function of time, t, such
that v(0) is the initial state, and let Mt be the t-fold matrix product of M =M(p) with itself. The
expected distribution of cells at time t is v(t, p) =Mtv(0). While the exact number of cells in each
state would be of interest, CGH technology only measures the average copy number in the cell pop-
ulation. To calculate this quantity, we use the vectors zk = (1, 2, . . . , k) and 1k = (1, 1, . . . , 1) (a
vector with k entries). The average copy number in the distribution v(t) can be calculated as
rðt; pÞ ¼ vðt; pÞ � zk
vðt; pÞ � 1k
To help determine the long-term behavior of r(t, p), let uðt; pÞ ¼ vðt;pÞ
vðt;pÞ�1k, the vector in the direction

of v(t) scaled so the sum of its entries equals 1.
Let us consider the case where k = 5. Let r(t, p) denote the average copy number of chromo-

some 7 after t generations. We use the software package Mathematica [44] (calculations omitted)
to calculate r(t, p) for k = 5:
rðt; pÞ ¼ 3ðkt
1 � 3kt
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where ki is the ith eigenvalue of the matrixM(p). Given any value for p, and any threshold rmin, we
can use Eq. (2.1) to find the smallest integral value for t for which r(t, p) > rmin. For example, if
p = 0.01 and rmin = 2.4, we note that r(2858, 0.01) = 2.39931, while r(2859, 0.01) = 2.40008.

2.2. Comparison with Gusev models

Gusev et al. [3] have presented two models for chromosomal missegregations. In [3], they use
the following framework: During the segregation phase of mitosis, any chromosome can witness
a segregation error (with probability p) that sends both copies of that particular chromosome to
one of the two resulting daughter cells. Thus, for example, a diploid cell will witness missegrega-
tions events of both copies of a given chromosome with probability p2, and half the time both mis-
segregations will result in a tetrasomic daughter cell (as well as a non-viable nullisomic daughter
cell). Our model ignores this possibility as highly improbable and is nearly identical to the Gusev
model for small values of p, as the matrix entries in the Gusev model corresponding to higher
powers of p are dominated by the linear terms.
In [4],Gusev et al. consider the longer term, but not asymptotic behavior of this system. Their sim-

ulations are constrained by memory limits, since they keep all cells that are used. They present sim-
ulations that have evolved for 200 generations, and claim to have studied simulations with more
generations, though still with fewer than 1000 generations. Curiously, they find that the modal copy
number in the cell population is 1, i.e. the cell population is dominated by monosomic cells, even
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when the system is seededwith one diploid cell. This phenomenon is a result of their decision to struc-
ture the underlying Markov chain such that monosomic cells are less likely (albeit only slightly less
likely) to witness missegregations than cells with higher copy number. Thus, the stationary distribu-
tion of this system has highest weight on themonosomic state. In contrast, if theMarkov chain were
structured with identical missegregation rates for all cells, then the stationary distribution would
necessarily be symmetrical about the mean of the copy numbers allowed (k/2 in our nomenclature).
In practice, though chromosomal losses are commonly observed in tumor cells, it is far from

desirable to have a mathematical framework that necessarily implies that monosomic cells must
represent the dominant clone line. Similarly, it would be undesirable to require an expected aver-
age copy number as high as k/2. In the following work, we allow for a variety of possible station-
ary distributions by allowing variation of the mitosis rates as a function of the copy number of the
chromosome in question. It would also be desirable to allow for variation of the segregation rates
by copy number and, when possible, by chromosome type. The current work does not concern
itself with the problem of tracking missegregations across different chromosomes, as this more dif-
ficult problem leads to computational unwieldiness. By restricting our attention to one chromo-
some we only need consider a k-state Markov chain, where k is the maximum allowed copy
number. If we were to consider all of C chromosomes simultaneously, this would require a Mar-
kov chain with kC states. Gusev et al. [4] use such a Markov chain, but to achieve computational
feasibility are forced to use a biologically unrealistic fixed intermitotic time to study the long-term
behavior of the system. Also, the Gusev Markov chain implicitly makes the biologically unreal-
istic assumption that all copy number aberrations should be equally likely, ignoring the selective
advantage or disadvantage given by individual aberrations. Studies have shown (e.g., [17]) that
copy number aberrations are not uniformly distributed, and, in fact, certain aberrations tend
to be much more likely than others.

2.3. Continuous time modeling

While the discrete time model in Section 2.1 is useful for examining the long-term behavior of a
synchronized population of cells with a constant mitosis rate, the assumptions used are biologically
unrealistic. Consider, for example, the role of the APC gene, a tumor suppressor that controls cell
birth and death processes. It is believed that the inactivation or loss of both copies of APC leads to
an increased cell birth to death ratio [45]. Thus, clone lines including this mutation would grow rap-
idly in the cell population. To address the problem of continuously varying mitosis rates in an asyn-
chronous population, we need to shift from a discrete time model to a continuous time model for
mitosis. The simulations of Gusev et al. [3] use two distributions for intermitotic time: a truncated
normal distribution and a uniform distribution. Neither possibility has a biological justification,
and both contradict studies modeling intermitotic times with real data [41–43,46–49]. We prefer
an exponential distribution, for reasons that will become clear in Section 3.
Suppose that the time T for a cell c with copy number i to undergo mitosis can be described as

an exponentially distributed random variable with parameter ki, and let Xi(t) denote the number
of cells with copy number i, for i = 1, 2, . . . , k. We can describe the overall behavior of this system
using a system of differential equations:
X 0
iðtÞ ¼ ð1� kiÞX iðtÞ þ 2kið1� pÞX iðtÞ þ ri�1pX i�1ðtÞ þ kiþ1pX iþ1ðtÞ.
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The expected behavior of the system is described by M(t) = exp(Qt), where
Q ¼
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i.e. qii = 1 + ki � 2kip, qi�1i = qi+1i = kip, and qij = 0 for |i � j| > 1. Given known values for the
mitosis rates (ki), we can express the entries of M(t) in closed form as a function of p (although
the exact formulae can be quite complicated). Given the decomposition of Q as Q = HDH�1,
where
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is a diagonal matrix, note that
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We can then express M(t) as M(t) = Hexp(Dt)H�1.
Consider a cell population growing at an exponential rate. The relationship between the dou-

bling time Td of the population and the exponential parameter k is given by k ¼ log 2
T d

. As an exam-

ple, consider the case where the doubling time of a population of unaltered cells is 18 h, k = 5, and
cells with three or more copies of chromosome 7 have an increased rate of growth with a doubling
time of 17 h; i.e., k1 ¼ k2 ¼ log 2

18
, and k3 ¼ k4 ¼ k5 ¼ log 2

17
. Let us consider a missegregation rate of

p = 0.01 (suggested by Lengauer et al. [35]) and examine the behavior of M(t). In this case,
Q ¼
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Let us assume we start with one cell with copy number 2. At time t, the expected state of the sys-
tem can be described as
vðtÞ ¼ MðtÞvð0Þ ¼ expðQtÞ
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0

0
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In this formulation, each function vi(t) is a linear combination of the non-zero entries of exp(Dt),
i.e. a linear sum of five exponential functions. We are interested in the value of t for which the
average copy number of a cell in the population will be at least 2.4, as this is the threshold for
detection of a copy number aberration using the CGH methodology as explained below. (See
[50] for an extended discussion of threshold choices in CGH studies.) The average copy number
in a sample can be found by considering the ratio
rðtÞ ¼ z5 � uðtÞ
15 � uðtÞ

;

where, as in Section 2.1, z5 = (1, 2, 3, 4, 5) and 15 = (1, 1, 1, 1, 1). The numerator of this ratio
counts the total number of chromosomes of interest (e.g., chromosome 7 in a colorectal polyp),
while the denominator counts the total number of cells. With the parameters chosen,
r(809.374) = 2.4000005. Thus with the parameters chosen, one would expect a CGH signal that
would be interpreted as a gain sometime between 809 and 810 h, i.e. after 33 days and 17–18 h.
This is considerably faster than the estimate from Section 2.1, a result attributable to the increased
mitosis rate hypothesized for cells with larger copy numbers.
In the CGH literature, a gain is considered to be present when the fluorescence ratio comparing

a tumor cell to a healthy cell is 1.2 or greater. In principle, the fluorescence ratio of 1.2 corre-
sponds to an average copy number in the tumor cells of at least 2 * 1.2 = 2.4. In experimental
practice, when the fluorescence ratio is 1.2, the average copy number may be slightly higher or
lower than 2.4 due to imprecision.
3. Modeling mitosis: a historical perspective

3.1. Transition probability model

In Section 2, we considered some simple models for mitosis, to facilitate a simultaneous consid-
eration of mitosis and mutation. In this section, we consider several historical models for mitosis.
Smith and Martin provided one of the first coherent mathematical models of the cell cycle [41].

The cell cycle can be broken into four phases: the G1 phase before DNA synthesis, the S phase
during which DNA is synthesized, the G2 phase after DNA synthesis and before the M phase,
when mitosis occurs. Whereas the G2, S, and M phases are typically of fixed duration in most cell
types, the length of the G1 phase can vary greatly, even within a single tissue sample. Smith and
Martin proposed modeling the process as consisting of a state of indeterminate length (state A),
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contained in the G1 phase, and a state of fixed length encompassing the other three phases
(state B).
This process is modeled as follows: let T be a random variable describing the intermitotic time

of a cell c. Then T = TA + TB, where TA is a random variable describing the time spent in state A
and TB is a constant describing the time spent in state B. Consideration of observed interphase
data led Smith and Martin to conclude that T is exponentially distributed.
The assumption that T is exponentially distributed has been widely used in practical flow

cytometry (see, e.g., [51,52]), with or without the additional assumptions of the transition prob-
ability model. The assumption of an exponential distribution was used implicitly by Gray [53]
to generate simulated data that was later used by Dean [54] to design and test the popular soft-
ware SFIT for estimating DNA distributions in flow cytometry. Smith and Martin showed that
the transition probability model together with the conclusion that T is exponentially distributed
imply that TA is exponentially distributed (see Appendix). Let kA be the parameter of this distri-
bution, such that, for values of t greater than TB and small values of Dt, P[T 2 (t, t +
Dt) |T > t] 
 kADt.
Suppose a population of cells is growing according to the Smith–Martin model. Let A(t) denote

the set of cells in state A at time t, B(t) denote the set of cells in phase B at time t and let
N(t) = jA(t) [ B(t)j. Cell lines usually have a doubling time that is experimentally repeatable if
there is enough space to grow and culture conditions (such as the amount and type of nutrients
in the media) are approximately the same. This observation implies that, if one ignores cell loss,
then the behavior of the system as a whole can be modeled as exponential growth, such that
N(t) = N(0) exp(kt) for some constant k.
We consider the growth rate as follows: let c be a cell chosen uniformly from X(t) = A(t) [ B(t),

and let T be the amount of time that passes before c undergoes mitosis. An exponential distribu-
tion P is based on the proposition that there is a constant k = limDt!0P[T < s + Dt |T > s] that is
independent of s. Smith and Martin provided a formula relating k, kA and TB. We present the
formula and its derivation in the Appendix.

3.2. Sloppy size models

The Smith–Martin model for mitosis described in Section 3.1 provides a good fit for observed
statistics of the cell cycle [55], and has been widely used and highly cited. The essential hypothesis
that time to mitosis is exponentially distributed was used in developing the SFIT software, as
noted above. However, its simplicity has been criticized, for example, by Murphy et al. [46] for
failing to explain the correlations in generation times of sister cells, by Tyson [56] for failing to
match some experimental data comparing the size and age of cells at mitosis, and by Koch [57]
for lacking a biological basis. The exponential distribution, which Smith and Martin use to de-
scribe the lag time the cell experiences in the A state, is used often in the physical sciences but
rarely in biological sciences. Whereas the exponential distribution requires a �memoryless� system,
biological systems tend to be too complex to be accurately described as memoryless. Thus, the
Smith–Martin model does not allow for any correlation between cell mass and the probability
of mitosis, nor does it allow for any correlation between the intermitotic times of sister cells.
In contrast to the transition probability model, which expresses the probability of mitosis as a

(fixed) function of time, the sloppy size model first proposed by Wheals [42] and then formalized
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by Tyson and Diekmann [43], expresses the probability of mitosis as a function of cell size (where
�size� can mean mass, volume, length, or some other measure of the cell). In later papers [47,58],
which benefited from increased understanding of the molecular mechanisms of mitosis, size was
modeled as the number of molecules of one or more proteins in the mitosis-associated CDC pro-
tein family.
In sloppy size modeling, it is typical to scale cell sizes to lie in the interval (0, 1). The sloppy size

model also presumes that there is a constant a, with 0.5 < a < 1, such that cell mitosis only occurs
in those cells whose size is at least a, but must occur in any cell before it reaches a size of 1 (on this
scale). The lower bound serves the mathematical purpose of preventing the possibility of a new
daughter cell from a mitosis immediately redividing a second time. Some biological justification
for the lower bound on a can be found in the experimental data of Wheals [42], although that
study concerns itself solely with asymmetric cell division in yeast.
Each daughter cell resulting from a mitosis inherits approximately half of the size s of the par-

ent cell (and thus has size in the interval (a/2, 1/2)). To allow some deviation in the sizes of the
daughter cells, we divide the cell mass into two parts of size rx and (1 � r)x, where r is normally
distributed about l = 0.5 with a standard deviation of r = 0.016. These values of l and r have
been estimated by Sveiczer et al. [48]. Letting x(t) represent the size of a cell at time t, we model
cell growth using a growth function V(x) according to the differential equation
dx
dt

¼ V ðxÞ.
Tyson and Diekmann [43] suggest a number of candidates for V(x), two of which we discuss
below.
In the sloppy size model, mitoses occur according to a probability distribution b(x) on the size

variable x; i.e., if Dt is the length of a small interval, the probability of witnessing a mitosis of a cell
of size x is b(x)Dt.
Consider an individual cell c. Let x(0) be the size of c at the time of its separation from a parent

cell. Then c will grow to at least the size a before mitosis is possible. Letting T0 denote the amount
of time required for this initial stage of growth, we observe that
T 0 ¼
Z a

xð0Þ
½V ðxÞ��1 dx.
For x > a, let P(x) be the probability that c will grow to at least size x before dividing. Then
P ðxÞ ¼ exp �
Z x

a

bðnÞ
V ðnÞ dn

	 

.

With the constraint that no cell grows greater than 1, the choices of b and V must result in the
equality P(1) = 0, i.e.
lim
x!1�

Z x

a

bðnÞ
V ðnÞ dn ¼ 1.
To model exponential growth, we let V(x) = kx for some constant k. With this choice of V, the
distribution b must have a singularity near x = 1 and must approach zero as x approaches a from



R. Desper et al. / Mathematical Biosciences 197 (2005) 67–87 77
above, since b(x) = 0 for x 6 a. To ensure continuity on the interval (0, 1), Tyson and Diekmann
suggested the following choice for b:
bðxÞ ¼
0; 0 < x < a;

b̂ðx� aÞ2

ð1� xÞ ; a < x < 1;

8><
>:
where b̂ is a constant such that
R 1

0 bðnÞdn ¼ 1. Alternatively, rather than forcing the mitosis prob-
ability distribution to have a singularity as x approaches 1, we could use a growth function that
leads to decelerating growth as x approaches 1. The logistic growth function V(x) = kx(1 � x)
allows the usage of any bounded distribution b with the constraint that b = 0 outside the interval
(a, 1). Following [43], we have used
bðxÞ ¼
0; 0 < x < a;

b̂ðx� aÞ2; a < x < 1;

�

again with b̂ chosen such that
R 1

0 bðnÞdn ¼ 1.
4. Simulation software

4.1. Software description

We have developed the software package MITOSIM, implementing the model of chromosomal
missegregation described in Section 2 and the models of mitosis described in Section 3. MITOSIM
maintains a queue of cells, ordered by the time to mitosis. The basic function is sampleTime: this
function selects the cell at the front of the queue, creates two daughter cells, randomly determines
whether the chromosomes divide equally to the two daughter cells, and calculates the subsequent
division times for each daughter cell. Division time can be calculated according to any of the fol-
lowing distributions: normal, exponential, exponential with user-provided lag, discrete, constant,
and sloppy size (with either exponential or logistic cell growth).
MITOSIM tests for chromosomal missegregation with each simulated mitosis. If no missegre-

gation occurs, a cell with copy number i for the chromosome under consideration yields two
daughter cells with copy number i, but a missegregation produces one daughter cell with copy
number i � 1 and one with copy number i + 1 for the chromosome in question. Only cells with
copy numbers in the range [1, k] are considered viable: if i � 1 = 0, the cell has lost all copies
of the genes residing on that chromosome (i.e. is nullisomic), is not considered to be viable and
is removed from the simulation. Similarly, if i = k, the cell with copy number i + 1 is considered
not to be viable and is removed from the simulation.
After each mitosis, the program adjusts the total chromosome count:

P
c#c, where c ranges

over the cells in the queue, and #c is the copy number of the selected chromosome in cell c.
The total copy number is then divided by the number of cells to calculate the average copy num-
ber. If the average copy number exceeds a user-provided threshold, the program notes the time
elapsed and terminates, returning statistics including total time elapsed, total number of mitoses,
total number of missegregations, total number of cells eliminated due to a zero or an excessively
high copy number, and the average doubling time witnessed as the population grew.
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In the laboratory setting, the cell lines may be resampled after a predetermined period of time,
to maintain a limit to the size of the cell population. This resampling is modeled by MITOSIM by
including each cell uniformly with a constant probability when a certain amount of time has
passed. In theory, the resampling process should have a negligible effect on the average copy num-
ber, presuming the minimum sample size is sufficiently large (the default setting uses n = 1000).
Also, using similar logic, this modeling ignores the possibility of regular cell death, as random cell
deaths should have a negligible effect on the average copy number of the population.

4.2. Parameter settings

To test MITOSIM, we modeled the growth of intestinal cells, with a specific eye toward the
presence or absence of chromosome 7. We tested the rate of signal appearance based on two pos-
sibilities: a null hypothesis that missegregation of chromosome 7 has no effect on mitosis rates,
and the hypothesis that cells with extra copies of chromosome 7 divide at an accelerated rate.
The increased rate of cell division was calculated based on the following information.
On average, the lining of the colon is replaced (through a combination of shedding and apop-

tosis) every 3–5 days in mammals [59]. Thus, a proliferating crypt cell must divide around once
every 96 h in order to keep pace with the rate of cell loss. A colon polyp of 1 cm3 containing
1 · 109 cells takes about 7 years to develop, and would require 30 population doublings (i.e.
230). The healthy colon tissue growing at a standard exponential rate would go through approx-
imately 640 generations over a seven year period. Thus, the appearance of a tumor reflecting an
additional 30 population doublings could be accomplished by an increase in the growth rate of
approximately 5%. We have modeled this increase in the growth rate by assuming that cells with
at least one extra copy of chromosome 7 witness an increase in their mitosis rates of approxi-
mately 5% per extra copy. These calculations assume that an increase in cell proliferation, and
not a marked reduction in apoptosis, is the dominant result of a genetic growth advantage. This
is supported by the fact that Ki67 protein levels, a marker of cell proliferation, are increased [60].
Most CGH studies declare that a gain of a chromosomal region has occurred when the fluores-

cence ratio exceeds 1.2, which corresponds to 2.4 chromosomes per test cell against 2 chromo-
somes per reference cell. Thus, we have enforced a stopping point when the average copy
number for cells in the population of the chromosome under consideration exceeded 2.4. (The
value of 2.4 is provided as input by the user; analogous experiments could be done using any
threshold.) CGH is the typical research tool used to assess gains and losses of chromosome mate-
rial in tumor samples since it can be performed without needing the tumor to grow in culture, and
also can be used (retrospectively) on formalin-fixed archived material. Nullisomic cells (i.e. cells
missing all copies of a given chromosome) were eliminated from the simulation population be-
cause such cells are usually not observed in vivo.

4.3. Comparison of various distributions

In this section, we consider the time required for the stop threshold to be reached under various
conditions. We tested each of the following distributions: exponential, exponential +4-hour lag,
exponential +8-hour lag, normal, sloppy size with an exponential growth rate, and sloppy size
with a logistic growth rate. To test the null hypothesis, we calibrated the parameters of each dis-
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tribution to have a doubling time of 18 h. The 18-hour estimate was based on the behavior of
colorectal cancer cell lines HCT116 (American Type Culture Collection cat # CCL-247),
p53HCT116 [61], and DLD-1 (American Type Culture Collection cat # CCL-221) in our labora-
tory. The calibration was done analytically for the various exponential distributions, and by sim-
ulation for the sloppy size distributions. (The normal distribution was simply set to have a mean
mitosis time of 18 h, as the expected intermitotic time equals the expected doubling time in this
case.) In contrast to the 5-state model used in prior sections, these simulations were performed
using a 7-state model. Results of these simulations are shown in Fig. 1.
Fig. 1 also includes a curve labeled �algebraic� that shows the values expected according to

Mathematica calculations performed as described in Section 2.2 (but using 7 states instead of
5). As we see, the plot of signal time vs. missegregation rate is nearly identical regardless of which
distribution is used to model the cell cycle when the missegregations rate is high.
To test the effect of an increased division rate, we then performed the same test, but scaled the

rate of the cell cycle as a function of the number of chromosomes in a cell. Using the rough
approximation of a 5% increase in the cell division rate for tumor cells, we scaled the mitosis rate
parameters such that doubling times were decreased by 1 h for each extra copy of chromosome 7
(and increased the doubling time of cells with copy number 1 by 1 h). This hypothesis led to con-
siderably faster growth of aberrant subpopulations, and to considerably faster achievement of the
stop threshold. Results are shown in Fig. 2.
Again, we see that the shape of the curve does not depend on the choice of the distribution used

to simulate the cell cycle. The exponential curve suggests that, regardless of the distribution used
for intermitotic times at the cellular level, an asynchronous population will observe mitoses at an
exponential rate.

4.4. Calculating p-values

Ultimately, the intended uses of MITOSIM are to test hypotheses about the missegregation
ratio, the growth advantage for cells with extra chromosomes, and other parameters of the model.
To compare two parameter settings P1 and P2 in a hypothesis testing framework, it is desirable to
know to what extent the output distributions for time to CGH signal (and other outputs) under P1

and P2 overlap, if at all. Suppose that parameter setting P1 results in generally shorter times to
reach the CGH ratio of 1.2. Then one could say that the time distribution for P1 differs from that
0
1000
2000
3000
4000
5000
6000
7000
8000

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

Missegregation rate

H
o

u
rs

exponential

exp + 4 hr
lag
exp + 8 hr
lag
normal

sloppy exp

sloppy
logistic
algebraic

Fig. 1. Signal times for constant rate mitosis models.



0

200

400

600

800

1000

1200

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

Missegregation rate

H
o

u
rs

exp

exp + 4 hr
lag
exp + 8 hr
lag
normal

sloppy exp

sloppy
logistic
algebraic

Fig. 2. Signal times for varying rate mitosis models.

80 R. Desper et al. / Mathematical Biosciences 197 (2005) 67–87
of P2 at P-value (confidence level) a, if the lower 1–a fraction of the times for P1 do not overlap
with the times for P2 or if the upper 1–a fraction of the times for P2 do not overlap with the times
for P1; which rule is applicable depends on which of P1 or P2 corresponds to the �null hypothesis�.
The standard value of a is 0.05. To facilitate such tests, MITOSIM prints out the 0.05 and 0.95
level for time to CGH signal and other quantities of interest.
Consider two examples based on the simulations summarized in Figs. 1 and 2. First compare

P1 = 5% mitotic advantage for an extra copy to P2 = no advantage, with other settings fixed at
exp +8hr lag for the time to mitosis and 0.01 as the missegregation rate [35]. In this case, we con-
sider P2 as the null hypothesis. The 0.95 level for time to CGH signal under P1 is 818.73 hrs, while
the minimum time under P2 is 1440.02 hrs, so these parameter settings lead to statistically distin-
guishable outcomes. Second, compare P1 = 0.05 missegregation ration, P2 = 0.01 missegregation
ratio, and P3 = 0.005 missegregation ratio with all other settings fixed at 5% mitotic advantage
and exp +8hr lag time for mitosis time. Again we consider P2 as the null hypothesis, since 0.01
was the missegregation ratio measured in [35] for a colorectal cancer cell line. Under the P1

hypothesis, 95% of the simulations required less than 363.01 hrs, while none of the simulations
under the P2 hypothesis took less than 506.3 hrs, which indicates that P1 and P2 can be statisti-
cally distinguished. In contrast, under the P3 hypothesis, 95% of the simulations required at least
774.97 hrs, a threshold also achieved by 166 of the P2 simulations, indicating that the P2 and P3

distributions have a nontrivial overlap.
5. Discussion

We have presented a matrix algebra model, and accompanying simulation software MITOSIM,
to consider the effects of chromosome copy number changes in cancer cell lines on mitosis times.
Our simulations with MITOSIM agree with estimates of the matrix algebra model calculated
using the software package Mathematica [44]. This modeling can be useful in testing hypotheses
about why aberrant cells eventually dominate the population in a tumor. The presence of chro-
mosome copy number changes can be measured by CGH. A much simpler modeling and simula-
tion method has been used by Roschke et al. [61] to test predictions about chromosome
rearrangements in cancer cell lines as measured by SKY.
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The work of Gusev et al. [3,4] introduced the possibility of an algebraic model for chromosomal
missegregations. Nowak et al. [62] and Komarova et al. [63] have also used mathematical model-
ing to investigate the onset of cancer and the role played by chromosomal instability during this
process. The Nowak/Komarova models, though mathematically sophisticated, are more con-
cerned with isolated genes than aneuploidy, and are not suitable for modeling the appearance
of CGH signal in a population of cells.
There are numerous ways in which our models are more useful and relevant to real cell line data

than the models of Gusev et al. First, the previous models did not allow for variability in the growth
rates of cells with different copy numbers, which is the hypothesis we wish to test. Second, the Gusev
model, by treating missegregations of each chromosome as an independent event with equal likeli-
hood (as opposed to considering missegregations by chromosome type), creates a situation where
monosomic cells are necessarily found in the most stable cell lines. While some chromosomal losses
are believed to lead to a selective advantage for the respective clone line, it is undesirable for amathe-
matical model to have this as a necessary relationship. Third, our non-synchronizedmodel using the
exponential time distribution, with or without lag, can be solved algebraically to find the time to
CGH signal for any amount of time; in contrast, the Gusev et al. method requires repeated multi-
plication of a non-sparse matrix. Fourth, the predictions of our models are expressed in terms of
average copy number, which can be directly estimated in the laboratory by CGH. The Gusev
et al. model does not lead to predictions easily testable by CGH or SKY. Fifth, we introduced in
MITOSIM the technique of sampling, which overcomes the limitation on simulation time that Gu-
sev et al. encountered. Sampling in the simulation is realistic because cell lines are sampled every few
population doublings when they are grown in the laboratory.
The software MITOSIM offers two classes of cell cycle models, the transition probability of

Smith and Martin [41] and the sloppy size control model as formulated by Tyson and Diekmann
[43]. When viewed in the aggregate, a population of cells growing according to the complex pro-
cess known as the cell cycle lends itself to analysis using the tools of linear algebra. The key to the
current analysis is the usefulness of the exponential distribution that arises in the Smith–Martin
model. The idea that the Smith–Martin model is a good starting point to make analytic estimates
is also emphasized by Cain and Chau [64] and Baker et al. [65], for example.
Aside from the transition probability model and the sloppy size model, there have been a num-

ber of previous models for the distributions of intermitotic times or the growth of cell populations.
Some studies have focused on the statistical properties of intermitotic times, as did Smith and
Martin. In [46,66], the Eyring–Stover survival theory was shown to better explain the observed
positive correlation between sister cells than the Smith–Martin model (which implies no such cor-
relation). Cain and Chau [64] extended the Smith–Martin model to consider variables such as cell
death, a post-mitotic state of constant length, and also introduced substrate-dependent unbal-
anced growth using variable cell maturity velocity and/or an extra quiescent state during the B
phase that growing cells can randomly enter or depart [67].
Tomasovic et al. [68] used matrix algebra to estimate and compare parameters of the cell cycle

under different conditions. This work attempted to estimate delays in the cell cycle caused by
either X-rays or a drug, using a state space corresponding to time periods in the cell cycle. In the-
ory, this type of approach can be used for any further refinement of time, though it would only be
useful when distinct observations are available for each of the time periods in question. A set of
coupled differential equations structurally similar to those we used for continuous time modeling
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was proposed by Gray [53]. Like Tomasovic et al., Gray used the states to mean subintervals of
the cell cycle. He used the differential equations to drive a computer simulation and parameter
fitting for the cell cycle, but did not use matrix algebra to obtain closed-form solutions.
Other models of the cell cycle have focused less on the intermitotic times than on either the cell

sizes or the accumulation of mitosis initiator enzymes, just as the sloppy size model does. Kimmel
et al. [49] modeled mitosis probabilities purely as a function of the accumulation of the unequal
division of nucleic acids. The 4-parameter continuum model of Cooper [69] is another model for
cell mitosis where occurrence of mitosis happens as a function of cell size or of the amount of
mitosis initiator in each cell. The continuum model suggests that variable lengths of the G1-phase
are a consequence, rather than a cause, of varying intermitotic times. Since the lengths of the M,
G2, and S phases are essentially constant, the variation in intermitotic times, regardless of its
cause, leads to a variation in the length of the G1 phase. This model can explain the lack of
the G1 phase in prokaryotic cells, a lack generally ignored by most models.
There are several other models of the cell cycle, which might be considered as alternatives. For

most of the models mentioned here, it is unclear how to represent the simple hypothesis that an
extra copy of a chromosome leads to faster mitosis within the numerous model parameters. One
model, the �tandem model� proposed by Tyson and Hanngsen [70], is intermediate between the
two models we have considered. The tandem model uses two states like the Smith–Martin model
but uses rigid size control instead of sloppy size control.
Koch has considered the historical evolution of the transition probability model, and has crit-

icized it for being primarily phenomenological, with insufficient biological motivation [57]. But for
our purposes, namely considering the large-scale growth behavior of a cell population while trying
to reduce the number of variables considered, the transition probability model appears to be ade-
quate. All of the models we considered, including the more complex sloppy size models, yielded
nearly identical exponential decay curves (Figs. 1 and 2) describing the appearance of CGH signal
as a function of missegregation rate. One can see some differences in the estimated time for low
missegregation rates in Fig. 1 when the expected mitosis time is the same for all copy numbers,
but the ability to discriminate between small advantage for extra copies (Fig. 2) and no advantage
(Fig. 1) is virtually identical. Thus, though the sloppy size model (and presumably other models)
may represent a more comprehensive biological understanding, the increased complexity of these
models does not appear to add to our understanding of the growth of larger populations. Indeed,
the sloppy size model requires the usage of density functions that we have defined arbitrarily, and
whose direct observation would be problematic given typical data set sizes. In conclusion, given
the easy transition from the simple transition probability model to the matrix algebraic formula-
tion of the problem, we prefer the TP model based on a consideration of the limit of the amount
of data readily available, and a general preference for simpler models over more complex models,
when both models appear to be adequate for a given task.
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Appendix

In this appendix, we review the relationship between the expected intermitotic time of a single
cell T and the expected doubling time Td of a population of cells. We also consider how the dou-
bling time varies when considering the Smith–Martin distribution where the intermitotic time T is
generated as the sum of an exponentially distributed variable TA and a constant TB. The deriva-
tions are from Smith and Martin [41] under their assumptions that the set of cells have a doubling
time Td, and that one can ignore cell loss because the cells are sampled to start a new culture every
few days. The derivations are presented here for the sake of completeness.
In the simplest case, T is a constant over all cells, and E[T] = E[Td] = T; i.e. the doubling time

equals the expected intermitotic time. But in general, this equality need not hold. Consider the
case where T is exponentially distributed with parameter k. In this case, E½T � ¼ 1

k, but
E½T d � ¼ ln 2

k . The doubling time is less than the expected mitosis time because quickly dividing cells
decrease the doubling time more than slowly dividing cells increase it. In practice, we let T̂ d be the
observed doubling time, and solve for our estimate for k, k̂ ¼ ln 2

T̂ d
.

Now consider the Smith–Martin distribution, where T = TA + TB, TA is random and TB is a
constant. The goal is to show, given that T is exponentially distributed (with parameter k, that
TA is itself exponentially distributed, and to derive a closed form for its parameter kA as a function
of k and TB. Let A(t) and B(t) denote the sets of cells in state A and B respectively at time t and let
N(t) = |A(t) [ B(t)|, the total number of cells at time t.
Let c be a cell in the population at time t. The cell c undergoes mitosis at time t if and only if c

leaves state A at time t � TB. Since the former event is memoryless event whose passage time can
be described by an exponentially distributed variable T, the passage time of the latter event can
also be described by an exponentially distributed variable. It follows that TA is also exponentially
distributed, and we can define its parameter kA using the equation:
kDt ¼ P ½c divides in interval ðt; t þ DtÞ�
¼ P ½c leaves state A in interval ðt � T B; t � T B þ DtÞ�
¼ P ½c 2 Aðt � T BÞ�kADt.
Let NA(t) and NB(t) denote the number of cells in the population in state A or state B, respec-
tively, at time t, such that N(t) = NA(t) + NB(t). Let t0 be an arbitrary real number, and let
t1 = t0 + TB. The number of new cells created in an interval of length TB is precisely equal to
the number of cells in state B at the beginning of the interval. Thus
Nðt1Þ � Nðt0Þ ¼ NBðt0Þ.

Also, presuming exponential growth of the population, the behavior of N(t) can be described by

the equation
NðtÞ ¼ Nð0Þ expðktÞ. ðA:1Þ

Thus
Nðt0Þ expðkT BÞ � Nðt0Þ ¼ NBðt0Þ. ðA:2Þ

Adding NA(t0) to (A.2) yields
Nðt0Þ ¼ ½Nðt0Þ expðkT BÞ � Nðt0Þ� þ NAðt0Þ;
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which leads to (after dividing by N(t0))
NAðt0Þ
Nðt0Þ

¼ 2� expðkT BÞ;
so NA/N is invariant as a function of t.
Therefore, one introduces a �rate constant� kA such that the expected number of cells undergo-

ing mitosis at time t + TB is
kNðt þ T BÞ ¼ kANAðtÞ. ðA:3Þ

The equation relates the rate of mitosis to the rate at which cells leave state A. Since the time to
mitosis is exponential, the set of cells in state B is decaying exponentially with parameter k, and
hence the set of cells in state A at time t will also decay exponentially with parameter kA. We can
use Eq. (A.1) to transform the left-hand side of (A.3):
kNðt þ T BÞ ¼ kNðtÞ expðkT BÞ;

and thus
kA ¼ k expðkT BÞNðtÞ
NAðtÞ

¼ k expðkT BÞ
2� expðkT BÞ

.
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progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation, Genes,
Chromosomes Cancer 25 (1999) 195.

[18] A. Müller, M. Korabiowska, U. Brinck, Review. DNA-mismatch repair and hereditary nonpolyposis colorectal
cancer syndrome, In Vivo 17 (2003) 55.

[19] S. Jacob, F. Praz, DNA mismatch repair defects: role in colorectal carcinogenesis, Biochimie 84 (2002) 27.
[20] R. Fishel, The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the

mutator hypothesis, Cancer Res. 61 (2001) 7369.
[21] T. Visakorpi, E. Hyytinen, P. Koivisto, M. Tanner, R. Keinänen, C. Palmberg, A. Palotie, T. Tammela, J. Isola,

O.-P. Kallioniemi, In vivo amplification of the androgen receptor gene and progression of human prostate cancer,
Nat. Genet. 9 (1995) 401.

[22] J.L. Phillips, S.W. Hayward, Y. Wang, J. Vasselli, C. Pavlovich, H. Padilla-Nash, J.R. Pezullo, B.M. Ghadimi,
G.D. Grossfeld, A. Rivera, W.M. Linehan, G.R. Cunha, T. Ried, The consequences of chromosomal aneuploidy
on gene expression profiles in a cell line model for prostate carcinogenesis, Cancer Res. 61 (2001) 8143.

[23] P. Platzer, M.B. Upender, K. Wilson, J. Willis, J. Lutterbaugh, A. Nosrati, J.K.V. Willson, D. Mack, T. Ried,
S. Markowitz, Silence of chromosomal amplifications in colon cancer, Cancer Res. 62 (2002) 1134.

[24] E. Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozenblum, M. Ringnér, G. Sauter, O. Monni,
A. Elkahloun, O.-P. Kallioniemi, A. Kallioniemi, Impact of DNA amplification on gene expression patterns in
breast cancer, Cancer Res. 62 (2002) 6240.

[25] J.R. Pollack, T. Sørlie, C.M. Perou, C.A. Rees, S.S. Jeffrey, P.E. Lonning, R. Tibshirani, D. Botstein, A.-L.
Børresen-Dale, P.O. Brown, Microarray analysis reveals a major direct role of DNA copy number alteration in the
transcriptional program of human breast tumors, Proc. Natl. Acad. Sci. USA 99 (2002) 12963.

[26] M.B. Upender, J.K. Habermann, L.M. McShane, E.L. Korn, J.C. Barrett, M.J. Difilippantonio, T. Ried,
Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in
immortalized and cancer cells, Cancer Res. 64 (2004) 6941.

[27] S. Heim, F. Mitelman, Cancer Cytogenetics, second ed., Wiley–Liss, New York, 1995.
[28] G. Bardi, B. Johansson, N. Pandis, S. Heim, N. Mandahl, Å. Andrén-Sandberg, I. Hägerstrand, F. Mitelman,
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